About the Project

relation to quantum eigenvalues

AdvancedHelp

(0.002 seconds)

1—10 of 12 matching pages

1: 25.17 Physical Applications
§25.17 Physical Applications
2: Bibliography W
  • S. W. Weinberg (2013) Lectures on Quantum Mechanics. Cambridge University Press, Cambridge, UK.
  • E. P. Wigner (1959) Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Pure and Applied Physics. Vol. 5, Academic Press, New York.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • J. Wimp (1984) Computation with Recurrence Relations. Pitman, Boston, MA.
  • E. Witten (1987) Elliptic genera and quantum field theory. Comm. Math. Phys. 109 (4), pp. 525–536.
  • 3: 18.38 Mathematical Applications
    Supersymmetric Quantum Mechanics (SUSY)
    EOP’s, Painlevé Transcendents, and Quantum Mechanics
    EOP’s are the subject of recent work on rational solutions to the fourth Painlevé equation, see Clarkson (2003a) and Marquette and Quesne (2016),where use of Hermite EOP’s makes a connection to quantum mechanics. …
    4: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    u λ 𝒟 ( T ) , corresponding to distinct eigenvalues, are orthogonal: i. … The special form of (1.18.28) is especially useful for applications in physics, as the connection to non-relativistic quantum mechanics is immediate:  d 2 d x 2 being proportional to the kinetic energy operator for a single particle in one dimension, q ( x ) being proportional to the potential energy, often written as V ( x ) , of that same particle, and which is simply a multiplicative operator. The sum of the kinetic and potential energies give the quantum Hamiltonian, or energy operator; often also referred to as a Schrödinger operator. … Should an eigenvalue correspond to more than a single linearly independent eigenfunction, namely a multiplicity greater than one, all such eigenfunctions will always be implied as being part of any sums or integrals over the spectrum. …
    5: Bibliography R
  • E. M. Rains (1998) Normal limit theorems for symmetric random matrices. Probab. Theory Related Fields 112 (3), pp. 411–423.
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • C. C. J. Roothaan and S. Lai (1997) Calculation of 3 n - j symbols by Labarthe’s method. International Journal of Quantum Chemistry 63 (1), pp. 57–64.
  • R. R. Rosales (1978) The similarity solution for the Korteweg-de Vries equation and the related Painlevé transcendent. Proc. Roy. Soc. London Ser. A 361, pp. 265–275.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 6: Bibliography V
  • G. Valent (1986) An integral transform involving Heun functions and a related eigenvalue problem. SIAM J. Math. Anal. 17 (3), pp. 688–703.
  • D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskiĭ (1988) Quantum Theory of Angular Momentum. World Scientific Publishing Co. Inc., Singapore.
  • N. Ja. Vilenkin and A. U. Klimyk (1992) Representation of Lie Groups and Special Functions. Volume 3: Classical and Quantum Groups and Special Functions. Mathematics and its Applications (Soviet Series), Vol. 75, Kluwer Academic Publishers Group, Dordrecht.
  • H. Volkmer (1982) Integral relations for Lamé functions. SIAM J. Math. Anal. 13 (6), pp. 978–987.
  • H. Volkmer (1998) On the growth of convergence radii for the eigenvalues of the Mathieu equation. Math. Nachr. 192, pp. 239–253.
  • 7: Bibliography L
  • L. D. Landau and E. M. Lifshitz (1965) Quantum Mechanics: Non-relativistic Theory. Pergamon Press Ltd., Oxford.
  • E. W. Leaver (1986) Solutions to a generalized spheroidal wave equation: Teukolsky’s equations in general relativity, and the two-center problem in molecular quantum mechanics. J. Math. Phys. 27 (5), pp. 1238–1265.
  • S. Lewanowicz (1985) Recurrence relations for hypergeometric functions of unit argument. Math. Comp. 45 (172), pp. 521–535.
  • R. L. Liboff (2003) Kinetic Theory: Classical, Quantum, and Relativistic Descriptions. third edition, Springer, New York.
  • L. Lorch and M. E. Muldoon (2008) Monotonic sequences related to zeros of Bessel functions. Numer. Algorithms 49 (1-4), pp. 221–233.
  • 8: Bibliography D
  • P. Dean (1966) The constrained quantum mechanical harmonic oscillator. Proc. Cambridge Philos. Soc. 62, pp. 277–286.
  • A. Deaño, J. Segura, and N. M. Temme (2010) Computational properties of three-term recurrence relations for Kummer functions. J. Comput. Appl. Math. 233 (6), pp. 1505–1510.
  • A. Debosscher (1998) Unification of one-dimensional Fokker-Planck equations beyond hypergeometrics: Factorizer solution method and eigenvalue schemes. Phys. Rev. E (3) 57 (1), pp. 252–275.
  • P. Deligne, P. Etingof, D. S. Freed, D. Kazhdan, J. W. Morgan, and D. R. Morrison (Eds.) (1999) Quantum Fields and Strings: A Course for Mathematicians. Vol. 1, 2. American Mathematical Society, Providence, RI.
  • T. M. Dunster (1999) Asymptotic approximations for the Jacobi and ultraspherical polynomials, and related functions. Methods Appl. Anal. 6 (3), pp. 21–56.
  • 9: 18.39 Applications in the Physical Sciences
    §18.39(i) Quantum Mechanics
    The Quantum Coulomb Problem
    with eigenvalues
    b) The Bohr Quantum Number
    10: Bibliography B
  • L. E. Ballentine and S. M. McRae (1998) Moment equations for probability distributions in classical and quantum mechanics. Phys. Rev. A 58 (3), pp. 1799–1809.
  • H. A. Bethe and E. E. Salpeter (1957) Quantum mechanics of one- and two-electron atoms. Springer-Verlag, Berlin.
  • G. Blanch and D. S. Clemm (1962) Tables Relating to the Radial Mathieu Functions. Vol. 1: Functions of the First Kind. U.S. Government Printing Office, Washington, D.C..
  • G. Blanch and D. S. Clemm (1965) Tables Relating to the Radial Mathieu Functions. Vol. 2: Functions of the Second Kind. U.S. Government Printing Office, Washington, D.C..
  • T. H. Boyer (1969) Concerning the zeros of some functions related to Bessel functions. J. Mathematical Phys. 10 (9), pp. 1729–1744.